1 /+
2 The MIT License (MIT)
3 
4     Copyright (c) <2013> <Oleg Butko (deviator), Anton Akzhigitov (Akzwar)>
5 
6     Permission is hereby granted, free of charge, to any person obtaining a copy
7     of this software and associated documentation files (the "Software"), to deal
8     in the Software without restriction, including without limitation the rights
9     to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10     copies of the Software, and to permit persons to whom the Software is
11     furnished to do so, subject to the following conditions:
12 
13     The above copyright notice and this permission notice shall be included in
14     all copies or substantial portions of the Software.
15 
16     THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17     IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18     FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19     AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20     LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21     OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22     THE SOFTWARE.
23 +/
24 
25 module des.math.method.calculus.integ;
26 
27 public import des.math.basic.traits;
28 public import des.math.basic.mathstruct;
29 
30 import std.math;
31 
32 ///
33 T euler(T)( in T x, T delegate(in T,double) f, double time, double h )
34     if( hasBasicMathOp!T )
35 {
36     return x + f( x, time ) * h;
37 }
38 
39 ///
40 T runge(T)( in T x, T delegate(in T,double) f, double time, double h )
41     if( hasBasicMathOp!T )
42 {
43     T k1 = f( x, time ) * h;
44     T k2 = f( x + k1 * 0.5, time + h * 0.5 ) * h;
45     T k3 = f( x + k2 * 0.5, time + h * 0.5 ) * h;
46     T k4 = f( x + k3, time + h ) * h;
47     return cast(T)( x + ( k1 + k2 * 2.0 + k3 * 2.0 + k4 ) / 6.0 );
48 }
49 
50 unittest
51 {
52     double a1 = 0, a2 = 0, pa = 5;
53     double time = 0, ft = 10, step = .01;
54 
55     auto rpart( in double A, double time ) { return pa; }
56 
57     foreach( i; 0 .. cast(ulong)(ft/step) )
58     {
59         a1 = euler( a1, &rpart, time+=step, step );
60         a2 = runge( a1, &rpart, time+=step, step );
61     }
62 
63     import std.math;
64     auto va = ft * pa;
65     assert( abs( va - a1 ) <= step * 2 * pa );
66     assert( abs( va - a2 ) <= step * pa );
67 
68     auto rpart2( in float A, double time ) { return pa; }
69 
70     static assert( !is(typeof( euler( a1, &rpart2, 0, 0 ) )));
71 }
72 
73 unittest
74 {
75     static struct Pos
76     {
77         double x=0, y=0;
78         mixin( BasicMathOp!"x y" );
79     }
80 
81     static struct Point
82     {
83         Pos pos, vel;
84         mixin( BasicMathOp!"pos vel" );
85     }
86 
87     Pos acc( in Pos p )
88     {
89         return Pos( -(p.x * abs(p.x)), -(p.y * abs(p.y)) );
90     }
91 
92     Point rpart( in Point p, double time )
93     {
94         return Point( p.vel, acc(p.pos) );
95     }
96 
97     auto state1 = Point( Pos(50,10), Pos(5,15) );
98     auto state2 = Point( Pos(50,10), Pos(5,15) );
99 
100     double t = 0, ft = 10, dt = 0.01;
101 
102     foreach( i; 0 .. cast(size_t)(ft/dt) )
103     {
104         state1 = euler( state1, &rpart, t+=dt, dt );
105         state2 = runge( state2, &rpart, t+=dt, dt );
106     }
107 }
108 
109 ///
110 unittest
111 {
112     import des.math.linear.vector;
113 
114     static struct Point 
115     { 
116         vec3 pos, vel; 
117         mixin( BasicMathOp!"pos vel" );
118     }
119 
120     auto v1 = Point( vec3(10,3,1), vec3(5,4,3) );
121     auto v2 = Point( vec3(10,3,1), vec3(5,4,3) );
122     assert( v1 + v2 == Point( vec3(20,6,2), vec3(10,8,6) ) );
123     assert( v1 * 2.0 == Point( vec3(20,6,2), vec3(10,8,6) ) );
124 
125     Point rpart( in Point p, double time )
126     { return Point( p.vel, vec3(0,0,0) ); }
127 
128     auto v = Point( vec3(10,3,1), vec3(5,4,3) );
129 
130     double time = 0, ft = 10, step = .01;
131     foreach( i; 0 .. cast(ulong)(ft/step+1) )
132         v = runge( v, &rpart, time+=step, step );
133 
134     assert( (v.pos - vec3(60,43,31)).len2 < 1e-5 );
135 }