1 /+
2 The MIT License (MIT)
3 
4     Copyright (c) <2013> <Oleg Butko (deviator), Anton Akzhigitov (Akzwar)>
5 
6     Permission is hereby granted, free of charge, to any person obtaining a copy
7     of this software and associated documentation files (the "Software"), to deal
8     in the Software without restriction, including without limitation the rights
9     to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10     copies of the Software, and to permit persons to whom the Software is
11     furnished to do so, subject to the following conditions:
12 
13     The above copyright notice and this permission notice shall be included in
14     all copies or substantial portions of the Software.
15 
16     THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17     IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18     FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19     AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20     LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21     OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22     THE SOFTWARE.
23 +/
24 
25 module des.math.linear.triangle;
26 
27 import std.traits;
28 import des.math.linear.vector;
29 import des.math.linear.matrix;
30 import des.math.linear.ray;
31 import des.math.basic;
32 
33 ///
34 struct Triangle(T) if( isFloatingPoint!T )
35 {
36     ///
37     alias Vector3!T vectype;
38 
39     ///
40     vectype[3] pnt;
41 
42 pure:
43 
44     ///
45     this( in vectype P0, in vectype P1, in vectype P2 )
46     {
47         pnt[0] = P0;
48         pnt[1] = P1;
49         pnt[2] = P2;
50     }
51 
52     @property
53     {
54         ///
55         vectype perp() const { return cross( pnt[1]-pnt[0], pnt[2]-pnt[0] ); }
56         ///
57         vectype norm() const { return perp.e; }
58         ///
59         T area() const { return perp.len / 2.0; }
60         ///
61         vectype center() const { return (pnt[0] + pnt[1] + pnt[2]) / 3.0f; }
62     }
63 
64     /// affine transform
65     auto tr(X)( in Matrix!(4,4,X) mtr ) const
66     {
67         return Triangle!T( (mtr * vec!(4,T,"x y z w")( pnt[0], 1 )).xyz,
68                            (mtr * vec!(4,T,"x y z w")( pnt[1], 1 )).xyz,
69                            (mtr * vec!(4,T,"x y z w")( pnt[2], 1 )).xyz );
70     }
71 
72     ///
73     Ray!(T)[3] toRays() const
74     {
75         alias Ray!T st;
76         return [ st.fromPoints( pnt[0], pnt[1] ),
77                  st.fromPoints( pnt[1], pnt[2] ),
78                  st.fromPoints( pnt[2], pnt[0] ) ];
79     }
80 
81     /+ высота проведённая из точки это отрезок, 
82        соединяющий проекцию точки на плоскость и 
83        саму точку (Ray) +/
84     ///
85     auto altitude( in vectype pp ) const
86     {
87         auto n = norm;
88         auto dst = n * dot( n, pp-pnt[0] );
89         return Ray!T( pp - dst, dst );
90     }
91 
92     ///
93     auto project(F)( in Ray!F seg ) const
94     {
95         auto n = norm;
96         auto dst1 = dot( n, seg.pos-pnt[0] );
97         auto dst2 = dot( n, seg.end-pnt[0] );
98         auto diff = dst1 - dst2;
99         return Ray!T( seg.png - n * dst1,
100                           seg.dir + n * diff );
101     }
102 
103     ///
104     auto intersect(F)( in Ray!F seg ) const
105     { return seg.intersect( project(seg) ); }
106 }
107 
108 ///
109 alias Triangle!float  fTriangle;
110 ///
111 alias Triangle!double dTriangle;
112 ///
113 alias Triangle!real   rTriangle;
114 
115 ///
116 unittest
117 {
118     auto poly = fTriangle( vec3(0,0,0), vec3(1,0,0), vec3(0,1,0) );
119     assert( poly.area == 0.5f );
120     assert( poly.norm == vec3(0,0,1) );
121 
122     auto pnt = vec3( 2,2,2 );
123     auto a = poly.altitude( pnt );
124     assert( a.pos == vec3(2,2,0) );
125     assert( a.dir == vec3(0,0,2) );
126 }