1 /+
2 The MIT License (MIT)
3 
4     Copyright (c) <2013> <Oleg Butko (deviator), Anton Akzhigitov (Akzwar)>
5 
6     Permission is hereby granted, free of charge, to any person obtaining a copy
7     of this software and associated documentation files (the "Software"), to deal
8     in the Software without restriction, including without limitation the rights
9     to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10     copies of the Software, and to permit persons to whom the Software is
11     furnished to do so, subject to the following conditions:
12 
13     The above copyright notice and this permission notice shall be included in
14     all copies or substantial portions of the Software.
15 
16     THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17     IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18     FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19     AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20     LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21     OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22     THE SOFTWARE.
23 +/
24 
25 module des.math.linear.poly;
26 
27 import std.traits;
28 import des.math.linear.vector;
29 import des.math.linear.matrix;
30 import des.math.linear.segment;
31 import des.math.basic;
32 
33 struct Poly(T) if( isFloatingPoint!T )
34 {
35     alias Vector!(3,T,"x y z") vectype;
36     vectype[3] pnt;
37 
38     pure this( in vectype P0, in vectype P1, in vectype P2 )
39     {
40         pnt[0] = P0;
41         pnt[1] = P1;
42         pnt[2] = P2;
43     }
44 
45     @property
46     {
47         vectype perp() const { return cross( pnt[1]-pnt[0], pnt[2]-pnt[0] ); }
48         vectype norm() const { return perp.e; }
49         T area() const { return perp.len / 2.0; }
50         vectype center() const { return (pnt[0] + pnt[1] + pnt[2]) / 3.0f; }
51     }
52 
53     auto tr(X)( in Matrix!(4,4,X) mtr ) const
54     {
55         return Poly!T( (mtr * vec!(4,T,"x y z w")( pnt[0], 1 )).xyz,
56                        (mtr * vec!(4,T,"x y z w")( pnt[1], 1 )).xyz,
57                        (mtr * vec!(4,T,"x y z w")( pnt[2], 1 )).xyz );
58     }
59 
60     Segment!(T)[3] toSegments() const
61     {
62         alias Segment!T st;
63         return [ st.fromPoints( pnt[0], pnt[1] ),
64                  st.fromPoints( pnt[1], pnt[2] ),
65                  st.fromPoints( pnt[2], pnt[0] ) ];
66     }
67 
68     /+ высота проведённая из точки это отрезок, 
69        соединяющий проекцию точки на плоскость и 
70        саму точку (Segment) +/
71     auto altitude( in vectype pp ) const
72     {
73         auto n = norm;
74         auto dst = n * dot( n, pp-pnt[0] );
75         return Segment!T( pp - dst, dst );
76     }
77 
78     auto project(F)( in Segment!F seg ) const
79     {
80         auto n = norm;
81         auto dst1 = dot( n, seg.pnt-pnt[0] );
82         auto dst2 = dot( n, seg.end-pnt[0] );
83         auto diff = dst1 - dst2;
84         return Segment!T( seg.png - n * dst1,
85                           seg.dir + n * diff );
86     }
87 
88     auto intersect(F)( in Segment!F seg ) const
89     { return seg.intersect( project(seg) ); }
90 }
91 
92 alias Poly!float  fPoly;
93 alias Poly!double dPoly;
94 alias Poly!real   rPoly;
95 
96 unittest
97 {
98     auto poly = fPoly( vec3(0,0,0), vec3(1,0,0), vec3(0,1,0) );
99     assert( poly.area == 0.5f );
100     assert( poly.norm == vec3(0,0,1) );
101 
102     auto pnt = vec3( 2,2,2 );
103     auto a = poly.altitude( pnt );
104     assert( a.pnt == vec3(2,2,0) );
105     assert( a.dir == vec3(0,0,2) );
106 }