1 /+ 2 The MIT License (MIT) 3 4 Copyright (c) <2013> <Oleg Butko (deviator), Anton Akzhigitov (Akzwar)> 5 6 Permission is hereby granted, free of charge, to any person obtaining a copy 7 of this software and associated documentation files (the "Software"), to deal 8 in the Software without restriction, including without limitation the rights 9 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 copies of the Software, and to permit persons to whom the Software is 11 furnished to do so, subject to the following conditions: 12 13 The above copyright notice and this permission notice shall be included in 14 all copies or substantial portions of the Software. 15 16 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 19 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 THE SOFTWARE. 23 +/ 24 25 module des.math.linear.segment; 26 27 import std.math; 28 import std.traits; 29 import des.util.testsuite; 30 import des.math.linear.vector; 31 import des.math.linear.matrix; 32 import des.math.basic; 33 34 struct Segment(T) if( isFloatingPoint!T ) 35 { 36 alias Vector!(3,T,"x y z") vectype; 37 vectype pnt, dir; 38 mixin( BasicMathOp!"pnt dir" ); 39 40 static auto fromPoints( in vectype s, in vectype e ) 41 { return Segment!T( s, e - s ); } 42 43 @property 44 { 45 ref vectype start() { return pnt; } 46 ref const(vectype) start() const { return pnt; } 47 vectype end() const { return pnt + dir; } 48 vectype end( in vectype p ) 49 { 50 dir = p - pnt; 51 return p; 52 } 53 54 auto revert() const 55 { return Segment!(T).fromPoints( end, start ); } 56 57 T len2() const { return dir.len2; } 58 T len() const { return dir.len; } 59 } 60 61 /+ аффинное преобразование +/ 62 auto tr(X)( in Matrix!(4,4,X) mtr ) const 63 { 64 return Segment!T( (mtr * Vector!(4,T,"x y z w")( pnt, 1 )).xyz, 65 (mtr * Vector!(4,T,"x y z w")( dir, 0 )).xyz ); 66 } 67 68 /+ высота проведённая из точки это отрезок, 69 соединяющий проекцию точки на прямую и 70 саму точку (Segment) +/ 71 auto altitude( in vectype pp ) const 72 { 73 auto n = dir.e; 74 auto dd = pnt + n * dot(n,(pp-pnt)); 75 return Segment!T( dd, pp - dd ); 76 } 77 78 /+ общий перпендикуляр +/ 79 auto altitude(F)( in Segment!F seg ) const 80 { 81 /+ находим нормаль для паралельных 82 плоскостей в которых лежат s1 и s2 +/ 83 auto norm = cross(dir,seg.dir).e; 84 85 /+ расстояние между началами точками на прямых +/ 86 auto mv = pnt - seg.pnt; 87 88 /+ нормальный вектор, длиной в расстояние между плоскостями +/ 89 auto dist = norm * dot(norm,mv); 90 91 /+ переносим отрезок на плоскость первой прямой 92 и сразу находим пересечение +/ 93 auto pp = intersect( Segment!T( seg.pnt + dist, seg.dir ) ); 94 95 return Segment!T( pp, -dist ); 96 } 97 98 /+ пересечение с другой прямой 99 если она в той же плоскости +/ 100 auto intersect(F)( in Segment!F seg ) const 101 { 102 auto a = pnt; 103 auto v = dir; 104 105 auto b = seg.pnt; 106 auto w = seg.dir; 107 108 static T resolve( T a0, T r, T a1, T q, T b0, T p, T b1, T s ) 109 { 110 T pq = p * q, rs = r * s; 111 return ( a0 * pq + ( b1 - b0 ) * r * q - a1 * rs ) / ( pq - rs ); 112 } 113 114 auto x = resolve( a.x, v.x, b.x, w.x, a.y, v.y, b.y, w.y ); 115 auto y = resolve( a.y, v.y, b.y, w.y, a.x, v.x, b.x, w.x ); 116 auto z = resolve( a.z, v.z, b.z, w.z, a.y, v.y, b.y, w.y ); 117 118 x = isFinite(x) ? x : resolve( a.x, v.x, b.x, w.x, a.z, v.z, b.z, w.z ); 119 y = isFinite(y) ? y : resolve( a.y, v.y, b.y, w.y, a.z, v.z, b.z, w.z ); 120 z = isFinite(z) ? z : resolve( a.z, v.z, b.z, w.z, a.x, v.x, b.x, w.x ); 121 122 if( !isFinite(x) ) x = pnt.x; 123 if( !isFinite(y) ) y = pnt.y; 124 if( !isFinite(z) ) z = pnt.z; 125 126 return vectype( x, y, z ); 127 } 128 } 129 130 alias Segment!float fSeg; 131 alias Segment!double dSeg; 132 alias Segment!real rSeg; 133 134 version(unittest) 135 { 136 bool eq_seg(A,B,E=float)( in Segment!A a, in Segment!B b, in E eps=E.epsilon ) 137 { return eq_approx( a.pnt.data ~ a.dir.data, b.pnt.data ~ b.dir.data, eps ); } 138 } 139 140 unittest 141 { 142 auto r1 = fSeg( vec3(1,2,3), vec3(2,3,4) ); 143 auto r2 = fSeg( vec3(4,5,6), vec3(5,2,3) ); 144 auto rs = fSeg( vec3(5,7,9), vec3(7,5,7) ); 145 assert( r1 + r2 == rs ); 146 } 147 148 unittest 149 { 150 auto a = vec3(1,2,3); 151 auto b = vec3(2,3,4); 152 auto r1 = fSeg( a, b ); 153 assert( r1.start == a ); 154 assert( r1.end == a + b ); 155 r1.start = b; 156 assert( r1.start == b ); 157 r1.start = a; 158 assert( r1.len == b.len ); 159 r1.end = a; 160 assert( r1.len == 0 ); 161 } 162 163 unittest 164 { 165 import des.math.linear.matrix; 166 auto mtr = mat4( 2, 0.1, 0.04, 2, 167 0.3, 5, 0.01, 5, 168 0.1, 0.02, 3, 1, 169 0, 0, 0, 1 ); 170 171 auto s = fSeg( vec3(1,2,3), vec3(2,3,4) ); 172 173 auto ta = (mtr * vec4(s.start,1)).xyz; 174 auto tb = (mtr * vec4(s.end,1)).xyz; 175 auto ts = s.tr( mtr ); 176 177 assert( eq( ts.start, ta ) ); 178 assert( eq_approx( ts.end, tb, 1e-5 ) ); 179 } 180 181 unittest 182 { 183 auto s = fSeg( vec3(2,0,0), vec3(-4,4,0) ); 184 auto p = vec3( 0,0,0 ); 185 auto r = s.altitude(p); 186 assert( eq( p, r.end ) ); 187 assert( eq( r.pnt, vec3(1,1,0) ) ); 188 } 189 190 unittest 191 { 192 auto s = fSeg( vec3(2,0,0), vec3(0,4,0) ); 193 auto p = vec3( 0,0,0 ); 194 auto r = s.altitude(p).len; 195 assert( r == 2.0f ); 196 } 197 198 unittest 199 { 200 auto s1 = fSeg( vec3(0,0,1), vec3(2,2,0) ); 201 auto s2 = fSeg( vec3(2,0,-1), vec3(-4,4,0) ); 202 auto a1 = s1.altitude(s2); 203 auto a2 = s2.altitude(s1); 204 assert( eq_seg( a1, a2.revert ) ); 205 assert( a1.len == 2 ); 206 assert( eq( a1.pnt, vec3(1,1,1) ) ); 207 assert( eq( a1.dir, vec3(0,0,-2) ) ); 208 } 209 210 unittest 211 { 212 auto s1 = fSeg( vec3(-2,0,0), vec3(1,0,0) ); 213 auto s2 = fSeg( vec3(0,0,2), vec3(0,1,-1) ); 214 215 auto a1 = s1.altitude(s2); 216 assert( eq_seg( a1, fSeg(vec3(0,0,0), vec3(0,1,1)) ) ); 217 } 218 219 unittest 220 { 221 auto s1 = fSeg( vec3(0,0,0), vec3(2,2,0) ); 222 auto s2 = fSeg( vec3(2,0,0), vec3(-4,4,0) ); 223 assert( eq( s1.intersect(s2), s2.intersect(s1) ) ); 224 assert( eq( s1.intersect(s2), vec3(1,1,0) ) ); 225 }